Synthesis and Fluorescence Analysis of 3-Substituted
7-Dialkylamino-2H-1,4-benzoxazin-2-ones

Claude Trebaul, Jean Roncall,† Francis Garnier*,† and Robert Guglielmetti‡
Laboratoire de Synthèse Organique, Université de Bretagne Occidentale, 6, rue le Gorgeu, 29283 Brest, France
*Laboratoire de Photochimie Solaire, ER 241, C.N.R.S., 2-8, rue Henry Dunant, 94320 Thiais, France
‡Laboratoire de Chimie Organique et Bioorganique, Faculté des Sciences de Luminy, 70, Route L. Lachamp, 13258 Marseille, France
(Received December 19, 1985)

New benzoxazinone type dyes have been synthesized by the reaction of α-keto esters on 2-amino-5-(dialkylamino)phenols. The obtained 7-dialkylamino-2H-1,4-benzoxazin-2-ones show a strong fluorescence and a large Stokes shift, reaching 183 nm. An effect of 15 various substituents in position 3, together with a solvent effect have been characterized on their absorption and emission bands. Linear free energy relationships allow the tuning of their spectroscopic characteristics over a large spectral range.

The 2H-1,4-benzoxazin-2-ones, abusively called "azacoumarins," have been described by Wislicenus in 1897, and more recently by Biekert and Moffett. They have synthesized many heterocyclic compounds of this kind by the reaction of an acid or a keto ester with an α-amino phenol. Actually, only a few derivatives of benzoxazinones with an amino group in the position 7 have been described in the literature. These compounds (A) show a strong fluorescence which, due to the bathochromic effect of the heterocyclic nitrogen, is shifted towards the red when compared to the analogous 7-aminocoumarins (B). In order to better understand the spectroscopic properties of these highly fluorescent dyes (A), we have synthesized a large series of 3-substituted 7-amino-benzoxazinones, and analyzed the substituent effect together with the solvent effect on their absorption and emission spectra.

Synthesis of 2H-1,4-Benzoxazin-2-ones. The 7-amino derivatives of benzoxazinones are poorly described because of the difficulty to synthesize the starting 2,5-diaminophenols. These compounds are easily oxidized, and their fast degradation leads to highly-blue-colored products, whose structure is still unknown. Nevertheless, taking great care to avoid this oxidation, we isolated 2-amino-5-(dialkylamino)phenols 1a,b by reducing 5-dialkylamino-2-nitroso-phenols with sodium dithionite in basic medium (a, R=Me; b, R=Et).

The reactivity of the methyl group on the position 3 in the 7-dimethylamino-3-methyl-2H-1,4-benzoxazin-2-ones 3a allows the formation of 3-styrylbenzoxazinone 5, by using the method described by Le Bris, which involves the condensation of aromatic aldehydes.

Moreover, a Lewis acid such as anhydrous zinc chloride allows the condensation of a few α-keto esters 2 on the activated methyl group on the position 3.
An ester function on the position 3 can also be easily substituted into an amide function, the unsubstituted amide leading to the corresponding nitrile by dehydration.

Spectral Properties of 3-Substituted Benzoazinones. As shown on Table 1, 3-substituted benzoazinones (A) thus obtained showed very interesting fluorescence properties, which can be explained on the basis of the following mesomeric forms (I) and (II).

In the ground state, the π-electron distribution in this essentially neutral molecule closely relates to the form (I), with a minor contribution of the dipolar form (II). On the other hand, the first excited singlet state S_1 can be described by a predominant dipolar form (II'). Consequently, a large increase in the dipole moment of the molecule can be expected during the excitation $S_0 \rightarrow S_1$, which will result in a large rearrangement of the surrounding solvent molecule around the excited state. Thus the energy level of this excited state will be markedly lowered before the emission takes place, with regard to the energy level of its Franck-Condon excited state. These considerations explain the unusually large Stokes shift observed for these molecules (A), as compared to others dyes such as xanthenes or even the parent coumarins (B).

The dipolar moment variation will be controlled by

<table>
<thead>
<tr>
<th>R^1</th>
<th>(C_2H_5)_2O Abs Em nm</th>
<th>CHCl_3 Abs Em nm</th>
<th>DMF Abs Em nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3</td>
<td>384 484 100</td>
<td>400 502 102</td>
<td>395 525 130</td>
</tr>
<tr>
<td>CH_3CO_2CH_3</td>
<td>408 486 78</td>
<td>422 502 80</td>
<td>423 525 102</td>
</tr>
<tr>
<td>CH_3CO_2CH_3</td>
<td>428 512 84</td>
<td>444 530 86</td>
<td>445 550 105</td>
</tr>
<tr>
<td>CH_3OCH_3</td>
<td>427 501 71</td>
<td>440 520 80</td>
<td>443 551 108</td>
</tr>
<tr>
<td>CH_3CO_2CH_3</td>
<td>475 546 71</td>
<td>500 557 57</td>
<td>510 592 82</td>
</tr>
<tr>
<td>CH_3O_2CH_3</td>
<td>450 521 71</td>
<td>469 536 67</td>
<td>476 572 96</td>
</tr>
<tr>
<td>CH_3OCH_3</td>
<td>464 533 69</td>
<td>483 551 68</td>
<td>488 583 85</td>
</tr>
<tr>
<td>CH_3CO_2CH_3</td>
<td>450 548 98</td>
<td>467 584 117</td>
<td>468 586 118</td>
</tr>
<tr>
<td>CH_3CO_2CH_3</td>
<td>426 502 76</td>
<td>457 517 60</td>
<td>455 538 83</td>
</tr>
<tr>
<td>CONH_2</td>
<td>502 578 76</td>
<td>470 513 43</td>
<td>445 540 95</td>
</tr>
<tr>
<td>CONH_2H_4</td>
<td>466 511 65</td>
<td>476 524 48</td>
<td>454 522 68</td>
</tr>
<tr>
<td>CN</td>
<td>457 512 55</td>
<td>476 523 47</td>
<td>478 548 70</td>
</tr>
<tr>
<td>CH-CH-CH_3NH_2</td>
<td>472 560 88</td>
<td>500 616 116</td>
<td>499 634 135</td>
</tr>
<tr>
<td>CH-CH-CH_3NO_2</td>
<td>475 566 91</td>
<td>496 591 95</td>
<td>499 682 183</td>
</tr>
</tbody>
</table>

Abs = absorption maximum, Em = emission maximum, SS = Stokes Shift
the extent of the contribution of the dipolar forms (II, II') to the S_0 and S_1 states, and thus governed by external parameters which are able to modify the electronic distribution in the molecule. For instance substituent as well as solvent can be expected to affect on the position of the absorption and emission bands. For instance, if the small contribution of the polar form (II) in the ground state is increased by an electronic effect of the R^3 substituent, a shift of the main absorption band to longer wavelength will occur. A stabilization of (II) can also be achieved by the increase of the solvent polarity. The energy level of the S_1 excited state will also be affected by these effects, resulting in an even larger shift of the emission band towards longer wavelength.

In order to go into more details, we have analyzed the effects of the R^3 substituent and of the solvent on the spectral properties of this class of compounds (Tables 1 and 2). The R^3 substituent effect determined in three different solvents shows that shifts of the absorption band higher than 100 nm can be obtained by varying the electronic distribution in the molecule. Using the parameter σ_1 which represents the polar nature of a substituent, a satisfying correlation with absorption frequency is obtained for a few substituents for which σ_1 is given (Fig. 1). The emission maximum is also shifted by the substituents but to a smaller extent, as could be expected for a state in which the dipolar form (II') is predominant, even for unsubstituted molecule.

Solvents can also affect on the energy levels of the S_0 and S_1 states. As already shown in the literature, the spectroscopic properties of such type of molecules possessing two limit forms, a neutral and a dipolar one, are governed by the solvent polarity. Solvent parameters have been proposed for representing this effect, as for instance E_T on the basis of the spectral behavior of the pyridinium derivative (C). Ten solvents of varying polarity have been used to analyze the solvent effect on the absorption and emission bands of one representative molecule of (A), with

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Abs/nm</th>
<th>Em/nm</th>
<th>SS/cm⁻¹</th>
<th>Parameter E_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>390</td>
<td>478</td>
<td>4721</td>
<td>34.5</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>384</td>
<td>484</td>
<td>5381</td>
<td>34.6</td>
</tr>
<tr>
<td>Dioxane</td>
<td>383</td>
<td>482</td>
<td>5363</td>
<td>36</td>
</tr>
<tr>
<td>Chloroform</td>
<td>400</td>
<td>502</td>
<td>5080</td>
<td>39.1</td>
</tr>
<tr>
<td>Pyridine</td>
<td>398</td>
<td>506</td>
<td>5363</td>
<td>40.2</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>391</td>
<td>510</td>
<td>5968</td>
<td>42.2</td>
</tr>
<tr>
<td>DMF</td>
<td>395</td>
<td>525</td>
<td>6269</td>
<td>43.8</td>
</tr>
<tr>
<td>DMSO</td>
<td>399</td>
<td>532</td>
<td>6266</td>
<td>45</td>
</tr>
<tr>
<td>Methanol</td>
<td>398</td>
<td>558</td>
<td>7204</td>
<td>55.5</td>
</tr>
</tbody>
</table>

Fig. 1. Free energy relationship between absorption frequency \(\nu_{abs} \) and substituent parameter \(\sigma_1 \). Solvent: CHCl_3.

Fig. 2. Relationship between emission frequency (cm⁻¹) and the polarity parameter E_T in various solvents. R=Me. The very large shift observed, which obey to a linear relationship with E_T (Fig. 2), emphasizes the significance of the dipolar form contribution to the
structure of these molecules. The observed Stokes shift reaches unusual value as high as 183 nm, compared with the 100 nm obtained with the parent coumarin dyes (B) when studied in the same range of solvent polarity. Furthermore, these benzoazoxinone dyes possess a high fluorescence yield, as shown by the quantum yield $\eta=0.93$ obtained for $R=\text{CH}_3$ in chloroform, using Rhodamine 101 as standard.

In conclusion, the position of the absorption and emission bands of these new benzoazoxinone dyes can be tuned over a very large spectral range by the use of a substituent and (or) a solvent effect. Taking also account for their strong fluorescence, this new class of material appears promising for a large field of applications and particularly as laser dyes.

Experimental

Melting points were not corrected and were determined on a Kofler apparatus. The IR spectra were recorded on a Pye Unicam SP 200 spectrophotometer, the 1H NMR spectra on a JNM-FX 100 JEOL spectrometer (the chemical shifts were reported as δ values in parts per million employing tetramethylsilane as an internal standard). The absorption spectra were obtained on a Cary 219 spectrophotometer and the fluorescence spectra on a MPF-44R Perkin Elmer spectrophotometer. Elemental analyses were carried out by the CNRS Microanalytical Laboratory.

Preparation of 2-Amino-5-(dialkylyaminophenol) (1a,b).

The hydrochloride of 5-dialkylyamin-2-nitrosophenol have been obtained in yields of 90% following Ref. 8, then reduced into 2-amino-5-(dialkylyaminophenol) by sodium dithionite in basic medium.\(^9\)

We have isolated the compounds 1a and 1b by operating under nitrogen atmosphere to avoid oxidative degradation, and using them readily for subsequent cyclization into benzoazoxinones 3. Besides, the dihydrochlorides 1'a and 1'b are stable under solid state. 1'a: Gray crystals; mp 230°C (decomp). 1H NMR (D_2O) $\delta=3.37$ (s, 6H, N($CH_3)$_2), 7.20--7.37 (m, 2H, $H_2^+H_4$), 7.63 (d, $J=9$ Hz, 1H, H_5). 1'b: Slightly blue crystals; mp 220°C (dec). 1H NMR (D_2O) $\delta=1.10$ (t, $J=7$ Hz, 3H, N($CH_3)$_2), 3.57 (q, $J=7$ Hz, 4H, N-($CH_3)$_2), 6.80--7.10 (m, 3H, $H_2^+H_4$).

Preparation of 3-Substituted 7-Dialkylyamin-2H-1,4-benzoazin-2-ones.

Method A. To a solution of 20 mmol of α-ketoester 2' in 50 ml of dry toluene and under nitrogen atmosphere, 20 mmol of 2-amino-5-(dialkylyaminophenol) (1) were added with stirring. This reaction mixture was refluxed for 1 h and the water produced during the cyclization was eliminated by azeotropic distillation. After cooling, the organic layer was separated and concentrated to dryness. The benzoazoxinone 3 was purified by chromatography on deactivated alumina or on silica gel, then by recrystallization.

2d p-(CH_3)N-H$_2$CO-CO-CO$_2$H$_2$Y: Yellow-green crystals, mp 95°C (lit.\(^{10}\) mp 95°C). 2e p-(CH_3)N-C$_6$H$_4$CO-CO-CO$_2$H$_2$: Slightly yellow oil, bp 195°C/2 mm Hg.\(^{11}\) 2f C_8H_7NH_2CO-CO$_2$H$_2$: Yellow oil, bp 155--160°C/1 mm Hg, (lit.\(^{10}\) bp 213--215°C/23 mm Hg).

Method B. Under a nitrogen atmosphere and while stirring, a mixture of 20 mmol of dihydrochloride I' and 20 mmol of α-keto ester 2 in 50 ml of dry toluene was refluxed; then 40 mmol of triethylamine were gradually added. The reflux was continued for 1 h with elimination of water as azetropo. The cooled solution was filtered, the solid triethylaminium chloride was washed two times by 15 ml of toluene. All the organic layers were then treated as above.

7-Dimethylamino-3-methyl-2H-1,4-benzoazin-2-one (3a).

Orange yellow crystals mp 125--126°C (benzene-ethanol), yield 60% (method A); 70% (method B). Found: C, 64.59; H, 5.97; N, 13.81%. Calcld for $C_9H_8N_2O$: C, 64.69; H, 5.92; N, 13.72%. 1H NMR (CDCl$_3$) $\delta=2.47$ (s, 3H, CH_3), 3.02 (s, 6H, N(CH_3)$_2$), 6.32 (d, $J=2.5$ Hz, 1H, H_6), 6.60 (dd, $J=9$ and 3 Hz, 1H, H_5), 7.42 (d, $J=11$ Hz, 1H, H_4). UV-visible: λ_{max} 400 (CHCl$_3$), 395 nm (DMF); fluorescence: 502 (CHCl$_3$), 525 nm (DMF). IR (KBr): 1725 (s), 1624 cm$^{-1}$ (s) (π-strong).

7-Diethylamino-3-methyl-2H-1,4-benzoazin-2-one (3b).

Yellow crystals mp 65--64°C (cyclohexane). Yield: 50% (Method A); 54% (Method B). Found: C, 67.35; H, 5.94; N, 12.18. Calcld for $C_{10}H_{10}N_2O$: C, 67.22; H, 6.94; N, 12.06. 1H NMR (CDCl$_3$) $\delta=1.16$ (t, $J=7$ Hz, 6H, N(CH_3)$_2$), 2.37 (s, 3H, CH_3), 3.29 (q, $J=7$ Hz, 4H, N(CH_2)$_2$), 6.16 (d, $J=3$ Hz, 1H, H_6), 6.39 (dd, $J=9$ and 3 Hz, 1H, H_5), 7.47 (d, $J=9$ Hz, 1H, H_4). UV-visible: λ_{max} 397 (CHCl$_3$), 402 nm (DMF); fluorescence: 500 (CHCl$_3$), 520 nm (DMF). IR (KBr): 1733 (s), 1633 cm$^{-1}$ (s).

7-Dimethylamino-3-phenyl-2H-1,4-benzoazin-2-one (3c).

Orange crystals, mp 182°C (CHCl$_3$-ethanol). Yield 40% (method A). Found: C, 72.14; H, 5.15; N, 10.51%. Calcld for $C_{14}H_{12}N_2O$: C, 72.16; H, 5.30; N, 10.52%. 1H NMR (CDCl$_3$) $\delta=3.07$ (s, 6H, N(CH_3)$_2$), 6.33 (d, $J=3$ Hz, 1H, H_6), 6.68

\(\dagger\) α-Ketoesters 2 used are commercial (methyl pyruvate 2a, methyl benzoyleformate 2b, diethyl mesoxalate 2c) or have been prepared by a Friedel--Crafts reaction between the ester chloride of oxalic acid (CICOOC$_2$H$_5$) and the appropriate aromatic derivative. The structure of these α-keto esters has been verified by 1H NMR.

\(\ddagger\) 1 mmHg=133.322 Pa.
7-Diethylamino-3-phenyl-2H-1,4-benzoxazin-2-one (3d). Yield: 60% (Method B). Yellow crystals, mp 101 °C (cyclohexane). Found: C, 73.22; H, 6.21; N, 9.49%. Calcd for C_{13}H_{13}N_{2}O_{2}: C, 73.43; H, 6.16; N, 9.52%. 1H NMR (CDCl_3) δ = 1.19 (t, J = 7 Hz, 6H, N(CH_3)_2), 7.33 (q, J = 7 Hz, 4H, N(CH_3)_2), 7.18 (d, J = 9 Hz, 1H), 6.47 (dd, J = 9 and 3 Hz, 1H), 7.15 (7.73 (3H, 5H, aromatic phenyl-3)), 7.40 (d, J = 9 Hz, 1H, H_5). UV-visible: λ_{max} 440 (CHCl_3), 449 nm (DMF); fluorescence: 520 (CHCl_3), 557 nm (DMF). IR (KBr): 1728 (s), 1625 cm^{-1} (s).

Preparation of 7-dimethylamino-3-styryl-2H-1,4-benzoxazin-2-ones (5). A solution of 10 mmol of 3a and 20 mmol of aromatic aldehyde 4 in 20 ml of acetic anhydride was refluxed for 7 h. In the case of p-nitrobenzaldehyde 4b, the compound 5b was obtained by filtration of the cooled mixture. In the case of the p-(dimethylamino)benzaldehyde 4a, the compound 5a was isolated after concentration and chromatography on silica gel using the chloroform as eluent.

7-Diethylamino-3-(p-(dimethylamino)styryl)-2H-1,4-benzoxazin-2-one (5a). Yield: 60%; red crystals, mp 252 °C (CHCl_3–ethanol). Found: C, 71.53; H, 6.28; N, 12.58%. Calcd for C_{17}H_{17}N_{2}O_2: C, 71.62; H, 6.31; N, 12.53%. 1H NMR (CDCl_3) δ = 3.02 (s, 6H, N(CH_3)_2), 3.07 (s, 6H, N(CH_3)_2), 6.43 (d, J = 3 Hz, 1H, H_4), 6.67 (dd, J = 9 and 3 Hz, 1H, H_4), 6.70 (d, J = 9 Hz, 2H, H_3), 7.25 (d, J = 16 Hz, 1H, H_3), 7.53 (d, J = 9 Hz, 3H, H_3), 7.92 (d, J = 16 Hz, 1H, H_3). UV-visible: λ_{max} 500 (CHCl_3), 495 nm (DMF); fluorescence: 616 (CHCl_3), 634 nm (DMF). IR (KBr): 1730 (s), 1632 (m), 1600 cm^{-1} (s).

7-Diethylamino-3-(p-nitrostyryl)-2H-1,4-benzoxazin-2-one (5b). Yield: 64%; dark red crystals, mp 260 °C (CHCl_3). Found: C, 64.10; H, 4.54; N, 12.44%. Calcd for C_{17}H_{17}N_{2}O_2: C, 64.59; H, 4.48; N, 12.46%. This compound is nearly insoluble in NMR solvents and the spectrum cannot be registered. UV-visible: λ_{max} 496 (CHCl_3), 499 nm (DMF); fluorescence: 591 (CHCl_3), 682 nm (DMF). IR (KBr): 1737 (s), 1630 (s), 1615 (s), 1595 cm^{-1} (s).

Condensation of 3a with 1,4-Ketoesters. A mixture of 5 mol of 3a, 10 mmol of α-keto ester 2 and 5 mmol of anhydrous zinc chloride in 10 ml of acetic anhydride was refluxed for 1 h. After the removal of the solvent, the residue was washed with boiling methanol; the methanolic solution was evaporated and the residual oil was submitted to column chromatography on silica gel using the dichloromethane as eluent.

Methyl 3-(7-Diethylamino-2-oxo-2H-1,4-benzoxazin-3-yl)-2-methylpropenoate (6a). Yield: 42%; red crystals, mp 174—175 °C (CHCl_3–methanol). Found: C, 62.27; H, 5.52; N, 9.22%. Calcd for C_{18}H_{18}N_{2}O_2: C, 62.49; H, 5.59; N, 9.72%. 1H NMR (CDCl_3) δ = 2.42 (d, J = 1.6 Hz, 3H, C=C-CH_3): 3.08 (s, 6H, N(CH_3)_2), 3.82 (s, 3H, COOCH_3), 3.62 (d, J = 3 Hz, 1H, H_5), 1.66 (dd, J = 9 and 3 Hz, 1H, H_4), 7.52 (d, J = 9 Hz, 1H, H_3), 7.88 (q, J = 6 Hz, 1H, H_C=C-CH_3). UV-visible: λ_{max} 469 (CHCl_3), 476 nm (DMF); fluorescence: 536 (CHCl_3), 572 nm (DMF). IR (KBr): 1730 (s), 1710 (s), 1630 cm^{-1} (s).

Methyl 3-(7-Diethylamino-2-oxo-2H-1,4-benzoxazin-3-yl)-2-phenylpropenoate (6b). Yield: 21%; red crystals, mp 188 °C (CHCl_3–methanol). Found: C, 67.92; H, 5.17; N, 7.96%. Calcd for C_{18}H_{18}N_{2}O_2: C, 68.56; H, 5.18; N, 8.00%. 1H NMR (CDCl_3) δ = 3.08 (s, 6H, N(CH_3)_2), 3.95 (s, 3H, COOCH_3), 3.68 (d, J = 3 Hz, 1H, H_4), 6.65 (dd, J = 9 and 3 Hz, 1H, H_5), 7.20—7.70 (m, 7H, 5H aromatic H_5+H_C=C-CH_3). UV-visible: λ_{max} 483 (CHCl_3), 488 nm (DMF); fluorescence: 551 (CHCl_3), 583 nm (DMF). IR (KBr): 1740 (s), 1730 (s), 1620 cm^{-1} (s).

Diethyl 3-(7-Diethylamino-2-oxo-2H-1,4-benzoxazin-3-yl)-methylene malonate. Yield: 47%; red crystals, mp 175 °C (CHCl_3–methanol). Found: C, 60.00; H, 5.57; N, 7.61%.
Caled for C_{18}H_{20}N_{2}O_{6}: C, 59.59; H, 5.59; N, 7.77%. 1H NMR (CDCl_{3}) δ=1.35 (t, J=7 Hz, 6H, C(CH_{3})_{2}), 3.13 (s, 6H, N(CH_{3})_{2}), 4.38 (q, J=7 Hz, 4H, CH(CO_{2}C_{6}H_{5})_{2}), 6.38 (d, J=3 Hz, 1H, H_{a}), 6.67 (dd, J=9 Hz and 3 Hz, 1H, H_{b}), 7.33 (d, J=9 Hz, 1H, H_{c}), 7.96 (s, 1H, H_{d}), 8.93 (s, 1H, H_{e}) ppm. UV-visible: λ_{max} 500 (CHCl_{3}), 510 nm (DMF); fluorescence: 557 (CHCl_{3}), 592 nm (DMF). IR (KBr): 1745 (s), 1700 (s), 1628 cm^{-1} (s).

Reactivity of the Ester Group on the 3 Position of the 1,4-Benzoxazin-2-one. 3-Carboxamidyl-7-dimethylamino-2H-1, 4-benzoxazin-2-one (7a).

A solution of 10 mmol of 3e in a mixture of 50 ml of methanol and 5 ml of concentrated aqueous ammonia was refluxed during 15 min.

The amide 7a was obtained by filtration of the cooled mixture. Yield: 86%; red crystals, mp > 280 °C. Found: C, 56.82; H, 4.73; N, 18.16%. Caled for C_{11}H_{13}N_{2}O_{3}: C, 56.65; H, 4.75; N, 18.02%. This compound is nearly insoluble in NMR solvents and so the spectrum cannot be registered. UV-visible: λ_{max} 470 (CHCl_{3}), 445 nm (DMF); fluorescence: 530 (CHCl_{3}), 540 nm (DMF). IR (KBr): 3420 and 3285 (N=H), 1710, 1620, 1595 cm^{-1} (s).

7-Dimethylamino-3-phenylcarbamoyl-2H-1,4-benzoxazin-2-one (7b).

To a refluxed solution of 5 mmol of 3e in 10 ml of xylene, 10 mmol of aniline were slightly added while azetropo ethanol–xylene issued from the reaction is eliminated. After cooling the compound 7b is isolated by filtration. Yield: 50%; red crystals, mp 241 °C (CHCl_{3}–methanol). Found: C, 65.77; H, 4.68; N, 13.54%. Caled for C_{21}H_{18}N_{3}O: C, 66.01; H, 4.99; N, 13.59%. 1H NMR (CDCl_{3}) δ=3.18 (s, 6H, N(CH_{3})_{2}), 6.46 (d, J=3 Hz, 1H, H_{a}), 6.80 (dd, J=9 and 3 Hz, 1H, H_{b}), 7.0–7.6 (m, 3H, H_{c}+2H (o)-N-aromatic group), 7.7–8.0 (m, 3H, 2H(m)+1H(p)-N-aromatic group), 10.60 (s, large, 1H, NH_{2}C_{6}H_{5}). UV-visible: λ_{max} 476 (CHCl_{3}), 474 nm (DMF); fluorescence: 524 (CHCl_{3}), 522 nm (DMF). IR (KBr): 3285 (s, N=H), 1710 (s), 1625 (s), and 1596 cm^{-1} (s).

3-Cyano-7-dimethylamino-2H-1,4-benzoxazin-2-one (8).

A mixture of 10 mmol of amide 7a and of 10 mmol of P_{2}O_{5} was heated cautiously on the flame until near 100 °C. At this temperature the reaction starts violently and it can be slowed by rapid cooling. The residue was then extracted by boiling chloroform, the compound 8 then purified by submitting to column chromatography on silica gel, using the chloroform as eluent. Yield: 25%; red crystals, mp 260 °C. Found: C, 61.30; H, 4.31; N, 19.02%. Caled for C_{12}H_{15}N_{3}O: C, 61.39; H, 4.22; N, 19.53%. 1H NMR (DMSO-d_{6}) δ=3.22 (s, 6H, N(CH_{3})_{2}), 6.43 (d, J=3 Hz, 1H, H_{a}), 6.77 (dd, J=9 Hz and 3 Hz, 1H, H_{b}), 7.68 (dd, J=9 Hz, 1H, H_{c}) ppm. UV-visible: λ_{max} 476 (CHCl_{3}), 478 nm (DMF); fluorescence: 523 (CHCl_{3}), 548 nm (DMF). IR (KBr) 2212 (s, C=N), 1722 (s), 1625 cm^{-1} (s).

References

